American University of Beirut
 MATH 201

Calculus and Analytic Geometry III
Fall 2006-2007
quiz \# 1

Name: \qquad ID \#:

1. (15 points, 5 points each) Find each of the following limits:
a) $\lim _{n \rightarrow+\infty}(-1)^{n} \frac{n}{n+1}+1$
b) $\lim _{n \rightarrow+\infty} \frac{\ln ^{10} n}{n+10 n^{2 / n}}$
c) $\lim _{n \rightarrow+\infty}\left(\frac{3 n+1}{3 n}\right)^{2 n-1}$
2. (10 points) Show that the sequence $a_{n}=\frac{(n!)^{2} 4^{n}}{(2 n)!}$ is nondecreasing.

What can you say about the series $\sum_{n=0}^{+\infty} \frac{(n!)^{2} 4^{n}}{(2 n)!}$? justify.
3. (30 points, 10 points each) Determine if the following series converges or diverges. Justify your answers
a) $\sum_{n=0}^{+\infty} \frac{\ln n+e^{n}}{2^{2 n}+n^{3}}$
b) $\sum_{n=1}^{+\infty}\left(\frac{e}{\left(1+\frac{1}{2 n}\right)^{n}}\right)^{n}$
c) $\sum_{n=2}^{+\infty} \frac{1}{n^{\ln n}}$
4. (15 points) Find $\sum_{n=0}^{\infty}\left[(-1)^{n} \frac{\pi^{2 n+1}}{4^{n}(2 n+1)!}+\frac{2^{3 n}}{3^{2 n+2}}\right]$
5. a) (18 points) Find the interval of convergence of the power series $\sum_{n=1}^{+\infty} \frac{(x+1)^{n}}{1+\ln n}$ (be sure to check convergence at the endpoints)
b) (2 points) For what value(s) of x for which the series converges (i) absolutely? conditionally?
6. (10 points) Show that for $x>0,1-\frac{x}{2}<\frac{\ln (1+x)}{x}<1$.
(hint: use the Maclaurin series of $\ln (1+x)$ and the Alternating Estimation Theorem)

